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Week 1: Introducing Fourier Series

Welcome to the lecture notes for this course! In this first set of notes,
we will encounter Fourier Series, a powerful method for expressing periodic
functions in terms of simple sine and cosine terms. But first, a reminder of
some useful things.

1.1 Even, Odd and Periodic Functions

First, even and odd functions. They’re quite self-explanatory. An even
function gives the same value regardless of whether you change the sign of
its argument:

0 0

Figure 1.1: A function f(x) is even if f(x) = f(−x)

Meanwhile, an odd function is just the opposite: if you change the sign
of the value you feed in, i.e. x→ −x, then the function flips sign too.

0 0

Figure 1.2: A function f(x) is odd if f(x) = −f(−x)

It’s obvious ‘by inspection’ that you’ll get zero if you integrate an odd
function between symmetric limits either side of zero, so −K to K for exam-
ple. But it takes a few lines to prove it!
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Week 1: Introducing Fourier Series

Let h(x) be an odd function, i.e. h(−x) = −h(x). We can break up our
symmetric integral:∫ K

−K
h(x)dx =

∫ 0

−K
h(x)dx+

∫ K

0

h(x)dx

and then note the following...

∫ 0

−K
h(x)dx = −

∫ 0

K

h(−y)dy using y ≡ −x

=

∫ 0

K

h(y)dy since h is odd, i.e. h(y) = −h(−y)

= −
∫ K

0

h(y)dy reversing the limits of the integral.

so we have ∫ K

−K
h(x)dx = −

∫ K

0

h(y)dy +

∫ K

0

h(x)dx = 0

(the two terms are the same because x and y are just ‘dummy variables’
telling us how to do the integral; when we introduced y we gave it a definite
relation to x but that doesn’t matter here since x and y are dummies in two
different terms.)

On to periodic functions. A function is periodic if it just repeats itself
after a certain period (over and over again forever, and in both the directions
of positive and negative x). If a function f(x) is periodic with period P then
we can write f(x) = f(x+ P ).

0

0

Figure 1.3: A function f(x) is odd if f(x) = f(x+ P ).
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1.2 Adding together sine and cosine functions

We can see by playing that if we add together terms like sin(nx) and cos(nx)
for various integer n ≥ 0, we can get a pretty complex function. But since
because we are using integer n we’ll always have f(x) = f(x+ 2π).

So.... maybe we can deliberately put together a sum of sin(nx) and
cos(nx) to try to make (as nearly as possible) some particular periodic func-
tion f(x). The box below shows how we can use the tool matlab to visualise;
another option is Mathematica – but are vastly capable maths systems.

Computer exercise:
Use matlab, Mathematica or some-
thing similar to experiment with
constructing some complex func-
tions by combining sine and cosine
functions. (Example code below is
for matlab) How can we make it
non-periodic?

syms x;
f=2.5*cos(1.2*x)
.........+0.9*sin(0.4*x);
fplot(f,[-30,30]) Figure 1.4: Example output.

1.3 Introducing the Fourier Series.

For some general, well behaved f(x) which is periodic with a 2π period,
which means f(x) = f(x+ 2π), let’s suppose that we can write:

f(x) =
1

2
a0 +

∞∑
n=1

an cos(nx) + bn sin(nx)

Warning! A few textbooks write the constant a0 without the factor of 1
2
.
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(Fortunately most books use the a0/2 convention we are adopting, because
it yields more compact expressions later on).

Then we ask, how can we find out the right an and bn to use for some
particular f(x)? We could try trial and error, maybe on a computer, until the
resulting series looks right for the f(x) we want. But obviously it is better to
find expressions for an and bn through a bit of mathematical manipulation!

1.4 Finding the an and bn coefficients

Let’s start by seeing if we can get at the value of a0. The special thing about
a0 is that it is a constant term, whereas all the other an and bn are in front
of oscillatory terms.

In fact every one of those oscillatory terms, being sines and cosines with
period 2π/n, will all integrate to ZERO over one full period of f(x), i.e. from
0 to 2π (or −π to π or any other period). So: let’s do that - integrate over
one period to ‘kill’ all the terms except a0:

∫ 2π

0

f(x)dx =

∫ 2π

0

(
a0
2

+
∞∑
n=1

an cos(nx) + bn sin(nx)

)
dx

so we find∫ 2π

0

f(x)dx =
a0
2

∫ 2π

0

dx+
∞∑
n=1

an

∫ 2π

0

cos(nx)dx+ bn

∫ 2π

0

sin(nx)dx

=
a0
2

2π + 0 + 0

rearranging, we see we’ve managed to get at a0 as we hoped!

a0 =
1

π

∫ 2π

0

f(x)dx

But, can some similar trick allow us to get at the other constants, such as
an for n = 32 for example? Somehow, we’d want to do something so that a
term associated with the constant we are after, call it am, does not integrate
to zero, while all the others including the fixed term a0 do integrate to zero.

One way to make sure that the cos(mx) term (for example) does not
integrate to zero is to square it - then it has to be positive everywhere. So
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suppose we multiply all of f(x) by cos(mx):

cos(mx)f(x) = cos(mx)

(
a0
2

+
∞∑
n=1

an cos(nx) + bn sin(nx)

)

=
a0
2

cos(mx) +
∞∑
n=1

an cos(mx) cos(nx) + bn cos(mx) sin(nx)

Now, in the integral
∫ 2π

0
cos(mx)f(x)dx, the am term that we are after won’t

integrate to zero, just as we wanted. But what about the other terms - will
they disappear?

Well we can see that the a0 term is going to integrate to zero. For the
others, we have to work them out. This is an exercise in the problems. We’ll
find that:

∫ 2π

0

cos(nx) cos(mx)dx = 0 when m 6= n∫ 2π

0

cos2(nx)dx = π∫ 2π

0

sin(nx) sin(mx)dx = 0 when m 6= n∫ 2π

0

sin2(nx)dx = π∫ 2π

0

sin(nx) cos(mx)dx = 0 for any m,n

These integrals are can be written more compactly using a symbol δm,n
which is called the Kronecker delta.

δm,n = 1 when m = n

= 0 otherwise

so then we can write∫ 2π

0

cos(nx) cos(mx)dx = πδm,n∫ 2π

0

sin(nx) sin(mx)dx = πδm,n∫ 2π

0

sin(nx) cos(mx)dx = 0
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Going back to our expression for cos(mx)f(x)

cos(mx)f(x) =
a0
2

cos(mx) +
∞∑
n=1

an cos(mx) cos(nx) + bn cos(mx) sin(nx)

we see that these integrals are telling just what we hoped for: every single
term except for am cos(mx) cos(mx) is going to integrate to zero over a full
period:

∫ 2π

0

cos(mx)f(x)dx = 0 +

∫ 2π

0

am cos(mx) cos(mx)dx

= πam

So we’ve found an expression that applies for any am constant! Rearrang-
ing, and swapping to using the n label (since we aren’t using it for anything
else any more), we get

an =
1

π

∫ 2π

0

f(x) cos(nx)dx

Let’s compare this with our expression for a0:

a0 =
1

π

∫ 2π

0

f(x)dx

...we see that actually the an expression covers this too, since cos(0 x) = 1.
This is why we put that extra factor of 1/2 into the defintion of a0, so that
things would work out neatly and we wouldn’t have to keep writing a separate
line for a0. BUT when we later come to work out an for a real function, we
often need work out a0 as a separate case, because for n > 0 we’ll need to do
things like dividing by n.

By exactly the same argument, we can get any/all of the bn terms by
multiplying f(x) by the appropriate sine term and integrating.

So let’s summarize the definition of the Fourier series and the expressions
we’ve worked out for an and bn. These are the crucial equations that we’ll
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often use

f(x) =
a0
2

+
∞∑
n=1

an cos(nx) + bn sin(nx)

an =
1

π

∫ 2π

0

f(x) cos(nx)dx

bn =
1

π

∫ 2π

0

f(x) sin(nx)dx

CRUCIAL:
Remember that we can use any other complete period for the integrals,
e.g. −π to π instead of 0 to 2π. We should use whatever is easiest.

1.5 A way to think of all this...

As an aside, we might think about a previous time in mathematics that we
have met sometime similar: namely when we thought about vectors, and
writing a vector in terms of components.

Comparison Table
Feature Vectors Fourier Series
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1.6 When our function has a period other than 2π

So far we’ve assumed that the periodic function we’ve been given has a period
2π. Suppose that we’ve now been given a function g(x) that has some other
period, L. So then g(x) = g(x+L). How can we see how to scale the previous
equations for the Fourier series of a function to apply here?

We’ll let’s define a new function f(x) as follows:

f(x) ≡ g

(
L

2π
x

)
so that g(x) = f

(
2π

L
x

)
.

What is the period of this new function?

The period of our new f(x) is 2π, as we can confirm from

f(x+ 2π) = g

(
L

2π
x+

L

2π
2π

)
= g

(
L

2π
x+ L

)
= g

(
L

2π
x

)
= f(x).

But then the Fourier series for this new f(x) must be given by the ex-
pressions we’ve already worked out:

f(x) =
a0
2

+
∞∑
n=1

an cos(nx) + bn sin(nx)

an =
1

π

∫ 2π

0

f(x) cos(nx)dx bn =
1

π

∫ 2π

0

f(x) sin(nx)dx

However, we know how to get g(x) from f(x), it’s just g(x) = f
(
2π
L
x
)
. So

g(x) = f

(
2π

L
x

)
=

a0
2

+
∞∑
n=1

an cos

(
2nπx

L

)
+ bn sin

(
2nπx

L

)
and we can also translate the an expressions to use g(x) instead of f(x):

an =
1

π

∫ 2π

0

f(x) cos(nx)dx

=
1

π

∫ 2π

0

g

(
Lx

2π

)
cos(nx)dx

=
2

L

∫ L

0

g(u) cos

(
2nπu

L

)
du changing variable u ≡ Lx

2π
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And similarly for bn. Let’s collect this up. We’ll write the variable of
integration as x again because, well, we may as well! (Since it’s just the label
for the integral - it can be anything we like.) So:

If the period isn’t 2π and instead g(x) = g(x+ L)

g(x) =
a0
2

+
∞∑
n=1

an cos

(
2π

L
nx

)
+ bn sin

(
2π

L
nx

)
an =

2

L

∫ L

0

g(x) cos

(
2π

L
nx

)
dx

bn =
2

L

∫ L

0

g(x) sin

(
2π

L
nx

)
dx

Note the integrals can use any complete period. Often −L/2 to L/2 is good.

1.7 Fourier Series for Even and Odd Functions

Suppose we are given some periodic function g(x) = g(x + L) that has the
special property that it is odd, i.e. g(−x) = −g(x). This property will
simplify things. To see why let’s write out the coefficients using symmetric
limits:

an =
2

L

∫ L/2

−L/2
g(x) cos(2nπx/L)dx

bn =
2

L

∫ L/2

−L/2
g(x) sin(2nπx/L)dx

We notice immediately that a0 is the integral of an odd function between
symmetric limits, and so must be zero. What about the other an and the bn?

For the other an, the integrand is the product of g(x), which is an odd
function, and a cosine which is always even function. The two functions
multiplied together is itself an odd function, so all the an terms must be zero!

So if g(x) is odd then we can simplify our Fourier series:

If the function g(x) is odd...

g(x) =
∞∑
n=1

bn sin(2nπx/L)
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Also notice that the integrand of bn is even, so we can just do half the integral,
from 0 to L/2, and double it.

What about if we are given an g(x) that is an even function, g(x) =
g(−x)? Then the integrand of the expression for bn is an odd functions,
because it is a product of g(x) (even) and a sine function (odd). So all the
bn must be zero. If g(x) is even then we can simplify our series to

If the function g(x) is even...

g(x) =
a0
2

+
∞∑
n=1

an cos(2nπx/L)

Again, notice that the integrand of an is now going to be even, so we can
just do half the integral, from 0 to L/2, and double it.

1.8 An Example: The Square Wave

Consider the periodic function f(x) = f(x+ 2π) where

f(x) = +1 for 0 < x < π and f(x) = −1 for π < x < 2π.

Sketch the function here

The period is 2π so we can use the simple expressions, rather than the “L”
ones. More importantly, f(x) is an odd function, so things are simplified!

f(x) =
∞∑
n=1

bn sin(nx)

bn =
1

π

∫ 2π

0

f(x) sin(nx)dx
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So let’s work out the bn. The following space is left blank for you to fill
the derivation:

[Magenta coloured lines visible only for tutors.]

bn =
1

π

(∫ π

0

(1). sin(nx)dx+

∫ 2π

π

(−1). sin(nx)dx

)
=

1

π

(
−
[

cos(nx)

n

]π
0

+

[
cos(nx)

n

]2π
π

)

=
1

π

(
− (cos(nπ)− 1) + (cos(2nπ)− cos(nπ))

n

)
=

1

π

(
2− 2 cos(nπ)

n

)
So we find that

bn =
2

π

(
1− (−1)n

n

)
but this just alternates between zero for even n, and 4/(nπ) when n is odd.
So there are two equivalent ways we can write the series:

f(x) =
4

π

∞∑
n=1, n odd

sin(nx)

n
=

4

π

∞∑
n=0

sin((2n+ 1)x)

2n+ 1

One method explicitly states that the sum runs over only odd n, the other
runs over all n but uses 2n+ 1 to make odd numbers. They’re equally good.

11



Week 1: Introducing Fourier Series

....
Computer exercise:
Use your maths software to see if our expression for the Fourier series
of the square wave works! But we’ll have to cut off the series at some
finite maximum N so we can see what it looks like to cutoff at different
points. If you’re using matlab, here’s a basic script for N = 10:

....f=0;

....N=9;

....syms x

....for n=1:2:N

........a = 4/(pi*n);

........f = f + a*sin(n*x);

....end

....fplot(f,[-5,5])

Figure 1.5: Example of what matlab should produce for N = 10.

....
Computer extra exercise:
Expore: As we increase the number of terms in the series, what happens
to those “overshoots” that occur where the corners of the square wave
should be?
(Actually that overshoot even has a name: ‘the Gibbs Phenomenon’.)
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1.9 Second Example: The Triangular Wave

Consider the periodic function g(x) = g(x+ 2π) where

g(x) = π − |x| − π ≤ x < π

Sketch the function here

Again the period is 2π so we can use the simple expressions, rather than
the “L” ones. More importantly, g(x) is an even function, so things are again
simplified, this time by bn = 0. So:

g(x) =
a0
2

+
∞∑
n=1

an cos(nx)

an =
1

π

∫ π

−π
g(x) cos(nx)dx

So let’s work out the an terms. As usual, we need to take the a0 case
separately from the n > 0 cases, because of stuff like dividing by n.

We will have to deal with |x| which is a tricky function. But there is an
easy solution: write π− |x| as just π− x when x > 0, and π+ x when x < 0.
And in fact, since the integrand of an is even, we can just do the positive
half of the integral and double it!

a0 =
2

π

∫ π

0

g(x)dx =
2

π

∫ π

0

(π − x)dx =
2

π

(
π2 − π2

2

)
= π
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Now we should ask ourselves, as a check, ‘does this look right?’ This constant
offsets the whole graph upward. Seems about right.
Time to look at the general an, for n > 0:

an =
2

π

∫ π

0

g(x) cos(nx)dx because we are doubling the positive half

[Magenta coloured lines visible only for tutors.]

an =
2

π

∫ π

0

(π − x) cos(nx)dx

=
2

π

∫ π

0

cos(nx)dx+
2

π

∫ π

0

(−x) cos(nx)dx

The simple cos() integral is zero, but the other integral is not.

an = − 2

π

([
x sin(nx)

n

]π
0

−
∫ π

0

sin(nx)

n
dx

)
= − 2

π

[
x sin(nx)

n

]π
0

+
2

π

[
− cos(nx)

n2

]π
0

The sine term is zero at both limits.

Finally we obtain

an =
2

π

(
1− (−1)n

n2

)
So the first few terms of the series are

4

π

cos(x)

1
, 0,

4

π

cos(3x)

9
, 0,

4

π

cos(5x)

25
, ...
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Now we are ready to write out the answer:

g(x) =
π

2
+

4

π

∞∑
n=0

cos((2n+ 1)x)

(2n+ 1)2

where here we’ve opted for the ‘2n+ 1’ trick to create just the odd numbers.

....
Computer exercise:
Verify that indeed our expression is correct, so that as we add more and
more terms we get closer to the perfect triangular wave. You can reuse
the code that we employed for the square wave, but modify it to the
present case.
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