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Week 2: Complex Fourier Series & Transforms

In this second week of the course we’ll look through some further features
of Fourier series. Then we’ll step up to Fourier transforms, which are even
more powerful and useful.

1.1 Integration and differentiation of Fourier Series

Look again at the two examples we’ve just examined, the square wave (call
it f(x)) and the triangular wave (call it g(x)):

f(x) =
4

π

∞∑
n=0

sin((2n+ 1)x)

2n+ 1

g(x) =
π

2
+

4

π

∞∑
n=0

cos((2n+ 1)x)

(2n+ 1)2

We can see from inspection of the graphs that these two functions are
actually related: the square wave is (minus) the derivative of the triangular
wave.

So presumably, it must be the case that if we differentiate Fourier series
for g(x) term by term, will we get f(x)? Let’s try.

d g(x)

dx
=

4

π

∞∑
n=0

d

dx

cos((2n+ 1)x)

(2n+ 1)2

=
−4

π

∞∑
n=0

sin((2n+ 1)x)

2n+ 1

And this is exactly (minus) the expression we found for the square wave.
In general, for the types of function you will meet, differentiation and in-
tegration of Fourier series ‘works’. One thing to watch out for is the case
of differentiating a piecewise function that has discontinuous jumps - what
happens there can be more complex.
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....
Matlab exercise:
Use matlab to try differentiating the square wave and plot that: look at
the points where the original function f(x) has its jumps.
....f=0;
....N=10;
....syms x
....syms pi
....for n=1:2:N
........a=4/(pi*n);
........f = f + a*sin(n*x);
....end
....fplot(f,[-5,5])

....h=diff(f,x)

....fplot(h,[-5,5])

1.2 Functions Only Defined in a Finite Range

In many real-world situations, we might want to deal with a function that is
only defined in a limited range. It’s easy to think of an example. Imagine
a function that represents the vertical displacement of a guitar string away
from its rest position. Suppose the string-at-rest lies along the x−axis from
x = 0 to x = L. We’ll consider the situation where the guitarist has plucked
the string in the middle and the string is just about to be released so that,
for a moment, it has a triangular form:

D(x) =
2d

L
|X| for 0 ≤ x ≤ L

2

=
2d

L
(L− |X|) for

L

2
< x ≤ L

The point is that the function is simply not defined for x < 0 or x > L since
this is beyond the extent of the guitar!

What should we do here? Well we are free to specify the function any
way we like outside of the given range! So: can can just extend the
definition in such a way that the function becomes periodic. Of
course the smart choice will be to specify it in a way that makes the Fourier
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series as simple as possible. Maybe we’ll see a way to make the extended
function even (then the Fourier series will only need the constant and the
cosine terms) or odd (only sine terms needed).

Warning: In any given real modelling problem we will need to think a
bit further about the proper way to extend our function and make it periodic.
We’ll see more about this in the next part of the course, but for now here’s
a rule of thumb: Don’t put a discontinuity (a jump) in function at the point
where it goes out of the range of the original definition. Keep it continuous,
e.g. by mirroring the defined part of the function at its end points.

For the above example, let’s sketch how the plucked guitar string can be
part of a suitable infinite periodic function:

1.3 Fourier Theorem: Dirichlet Conditions

Earlier when we obtained expressions for the coefficients a0, am and bm,
by starting from the assumption that the periodic function f(x) could be
expressed perfectly as an infinite series of cos() and sin() terms. Is this
assumption always true?

The answer is that it is true in all cases that you will meet! But there
are extreme cases that do not work. Formally, we can write out the Dirichlet
Conditions which state when a function f(x) will have an exact Fourier series.
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....
The Dirichlet Conditions
If a single-valued function f(x) is periodic with period 2π, and in one
period it

• has a finite number of maxima and minima,

• has a finite number of discontinuities, and

• its absolute value is integrable,

then our usual expression for the Fourier series applies. In other words,

the series
a0
2

+
∞∑
n=1

an cos(nx)+bn sin(nx) will indeed match f(x) when

an =
1

π

∫ 2π

0

f(x) cos(nx)dx and bn =
1

π

∫ 2π

0

f(x) sin(nx)dx.

Where f(x) has a discontinuity then the Fourier series converges to the
midpoint of the jump.

Matlab exercise: Try to think of a function that would NOT meet the
Dirichlet Conditions. Use matlab to check if you’re right.

1.4 Parseval’s Theorem and Errors in the Fourier Series

Parseval’s theorem, which dates back to a 1799 and the work of Marc-Antoine
Parseval, can be thought of as a way to relate the square of a function to its
Fourier series. At first sight it may not look as if there is anything of very
great practical significance to it. We can state it like this:

1

2π

∫ 2π

0

( f(x) )2 dx = (
a0
2

)2 +
1

2

∞∑
n=1

a2n + b2n

Note that the left hand side of the equation is really taking an average of
the function since it is integrating it over a full period and dividing by the
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period length. So in words, we can say that the average value of a function
squared over one period can be written as just a certain sum of the squares
of the function’s Fourier coefficients (note the 1

2
in front of the n 6= 0 terms).

We could prove this pretty easily if we wanted - let’s outline how. The
proof would go like this. Consider the expression for f(x):

f(x) =
a0
2

+
∞∑
n=1

an cos(nx) + bn sin(nx)

and think about the kind of terms that we’d see if we went to the trouble
of squaring this expression. Well there would be a lot of actual squared
terms, including everything of the form (am cos(mx))2 and (bmsin(mx))2.
Integrating all these terms over one period and dividing by 2π would give
us exactly the expression we want. Meanwhile, all the cross terms in f(x)
squared, like 2 cos(mx) cos(nx) for n 6= m will integrate to zero. (You showed
that integrals like that are zero, on Problems Sheet 1).

But why might Parseval’s theorem be interesting to us? It helps us by
saying something about errors in a Fourier series. Suppose that someone
gave us a Fourier series, supposedly the series for some function f(x), but
there are errors, so really the series makes some function E(x). Let’s write
the true coefficients as an, bn, and the incorrect ones as An, Bn.

f(x) =
a0
2

+
∞∑
n=1

an cos(nx) + bn sin(nx), but

E(x) =
A0

2
+
∞∑
n=1

An cos(nx) +Bn sin(nx)

Now, how badly wrong is the incorrect function? One way to measure

how wrong it is, is just to work out the total integral of the square of the
difference, over one period. But Parseval’s Theorm makes that easy:

∫ 2π

0

(E(x)− f(x))2 dx = 2π

(
(a0 − A0)

2

4
+

1

2

∞∑
n=1

(an − An)2 +
∞∑
n=1

(bn −Bn)2

)

So the total error is made up of the squares of all the individual errors.
Because the errors are squared, they are positive – and so one error can’t
help to cancel another. Here are a couple of consequences:
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• We already knew that if one of our Fourier coefficients is wrong, it will
result in the overall Fourier series failing to match the target function.
But now we can say it doesn’t even help if we try to adjust another
Fourier coefficient to compensate (it would just make it worse).

• This also means that if we know we are going to to cut off our Fourier
series after (say) ten terms in some application, still there is no point
in trying to ‘boost’ the first term terms to compensate for the later
missing ones.

1.5 Complex Form of Fourier Series

There is another way to write a Fourier series - a way that is actually more
elegant from a mathematical point of view.

....
For a function f(x) having period 2π, so f(x) = f(x+ 2π), we can write:

f(x) = c0 + c1 exp(ix) + c-1 exp(-ix) + c2 exp(2ix) + c-2 exp(-2ix) + ....

=
∞∑

n=−∞

cn exp(inx)

Where the coefficients, including te c0, are given by

cn =
1

2π

∫ π

−π
f(x) exp(−inx)dx.

An exercise on Problem Sheet 2 shows how to derive this expression for
cn. Here let’s quickly derive the relation between the Fourier series we are
used to, and this new form. Well of course we’d usually write:

f(x) =
a0
2

+
∞∑
n=1

an cos(nx) + bn sin(nx)

We can use the identities

cos(u) ≡ 1

2
(exp(iu) + exp(−iu)) sin(u) ≡ 1

2i
(exp(iu)− exp(−iu))

so see that

cn =
an
2

+
bn
2i

=
1

2
(an−ibn) for n > 0, and cn =

1

2
(an+ibn) for n < 0
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This leaves just the constants in the two expressions, c0 = a0/2.

Now just for completeness, let’s write out the expressions for a complex
Fourier series when the period is L,

....
For a function f(x) having period L, so f(x) = f(x+ L), we can write:

f(x) =
∞∑

n=−∞

cn exp

(
i
2nπx

L

)
where

cn =
1

L

∫ L
2

−L
2

g(x) exp

(
−i2nπx

L

)
dx.

(Or we can integrate over any other complete period of course).

These expressions can be obtained from our previous expressions for a 2π
period function, just by scaling as we did before for regular Fourier series.

1.6 Introducing the Fourier Transform

Before moving on to talk about PDE’s, we should take the step beyond
Fourier Series to something that’s even more powerful and important: the
Fourier Transform. There are many ways to motivate this topic, which is a
kind of upgrade, but here we will just summarise the core idea.

Let’s start by rewriting the expressions for the complex Fourier series
with a small change of notation

f(x) =
∞∑

n=−∞

1

L
F (kn) exp (i knx) where kn ≡

2πn

L
.

Here we’ve replaced the constants cn using a function F that generates the
constants – for any value of k we define the new function F as

F (k) =

∫ L
2

−L
2

f(x) exp (−ikx) dx.

Note that kn is simply the spatial frequency, i.e. the number of cycles per
metre multiplied by 2π.
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The difference between two consecutive allowed k values is kn+1−kn which
is 2π

L
, and we’ll represent this with the symbol δk ≡ 2π

L
.

Summarising, in this new notation we can write:

....
Using Fourier Series, a periodic function f(x) = f(x+ L) is

f(x) =
1

2π

∞∑
n=−∞

F (kn) exp (i knx) δk

with F (kn) =

∫ L
2

−L
2

f(x) exp (−i knx) dx

using kn ≡
2πn

L
and δk ≡ 2π

L

This definition of a Fourier series is very compact, with a lot of similarity
between the expressions for f(x) and F (kn). But it is just a change of
notation, we haven’t added anything new.

Now let’s think about what happens if we let the period of the function
become longer and longer, i.e. L→∞. Well, of course the limits of the F ()
integral will become ±∞. The more interesting thing is to look at the sum
expression. As L tends to infinity, the quantity δk becomes infinitesimal –
essentially, the kn quantity becomes a continuous variable k and we arrive at
the Fourier transform. Crucially, now f(x) doesn’t need to be periodic.

....
Using the Fourier Transform F (k) we can write any function f(x) as

f(x) =
1

2π

∫ ∞
−∞

F (k) exp(i k x)dk where F (k) =

∫ ∞
−∞

f(x) exp(−i k x)dx

It may be helpful to pause and compare the two blue boxes above to see
how we’ve turned the series into the intergral.
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Note that there are various slightly different definitions that move around
the 2π, one common example is :

f(x) =

∫ ∞
−∞

f̂(ξ) exp(2πi xξ)dξ where f̂(ξ) =

∫ ∞
−∞

f(x) exp(−2πi ξx)dx

The important thing to appreciate is that the function F (k) does a similar
job to the constants cn in the complex Fourier series - it tells us how much
of each frequency makes up f(x).

Aside: The function F (k) can be complex, giving both real and imaginary
parts, even if f(x) is strictly real. The magnitude |F (k)| tells us how much
of a given frequency is present in f(x), but what meaning could the phase
have?

Notice how similar the two expressions are; if we are given either f(x) or
F (k) then we can obtain the other one. Really they are telling us the same
thing in two different ways: f(x) tells us how some quantity varies in space,
while F (k) tells us how the same function varies in frequency.

Let’s do an example. Suppose we have a function that is non-periodic
and is defined like this:

f(x) = 1− 2|x| for |x| ≤ 1

2

= 0 for |x| > 1

2
.

Let’s sketch this and then find the Fourier transform F (k):
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[Magenta coloured lines visible only for tutors.]

F (k) =

∫ ∞
−∞

f(x) exp(−i k x)dx

=

∫ 1/2

−1/2
(1− 2|x|) exp(−i k x)dx

=

∫ 1/2

−1/2
(1− 2|x|) (cos(− k x) + i sin(− k x)) dx

=

∫ 1/2

−1/2
(1− 2|x|) cos(k x) dx− i

∫ 1/2

−1/2
(1− 2|x|) sin(k x) dx

=

∫ 1/2

−1/2
(even function) dx− i

∫ 1/2

−1/2
(odd function) dx

= 2

∫ 1/2

0

(1− 2x) cos(k x) dx− 0

= 2

{[
(1− 2x) sin(kx)

k

]1/2
0

− 2

∫ 1/2

0

sin(k x)

k
dx

}

= 4

{
0−

[
cos(kx)

k2

]1/2
0

}

= 4
1− cos(k/2)

k2

Finally we obtain,

F (k) = 4
1− cos(k/2)

k2
.

Given this F (k) we can use matlab or similar to check that

f(x) =
1

2π

∫ ∞
−∞

F (k) exp(i kx) dk

does indeed give us the function we want! The code is shown in the following
blue box.
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In the code below, notice we integrate between limits k = ±10 instead of
±∞ because it is a numerical integral and k = ±10 will be plenty. But what
will happen if we reduce the limits to, say, k = ±1?

....
Matlab code:
....syms k
....syms pi
....
....F=4*(1-cos(k))/kˆ2
....
....% Make a list of x values we want to plot at
....xVals=linspace(-3,3,31)
....
....% Make a list of the corresponding integrands
....% note mathlab uses j for sqr root of -1
....fns=F*exp(j*xVals*k);
....
....% Do all the corresponding integrals!
....% This may take a minute to perform.
....output=vpa(int(fns,k,-10,10));
....
....% Check imaginary part is negligible, remove it
....max(abs(imag(output)))
....output=real(output);
....
....plot(xVals,output,'-o')
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